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We show that Monte Carlo simulations of neutral particle transport in planar-
geometry anisotropically scattering media, using the exponential transform with an-
gular biasing as a variance reduction device, are governed by a new “Boltzmann
Monte Carlo” (BMC) equation, which includes particle weight as an extra indepen-
dent variable. The weight moments of the solution of the BMC equation determine
the moments of the score and the mean number of collisions per history in the nonana-
log Monte Carlo simulations. Therefore, the solution of the BMC equation predicts
the variance of the score and the figure of merit in the simulation. Also, by (i) using
an angular biasing function that is closely related to the “asymptotic” solution of the
linear Boltzmann equation and (ii) requiring isotropic weight changes at collisions,
we derive a new angular biasing scheme. Using the BMC equation, we propose a
universal “safe” upper limit of the transform parameter, valid for any type of expo-
nential transform. In numerical calculations, we demonstrate that the behavior of the
Monte Carlo simulations and the performance predicted by deterministically solving
the BMC equation agree well, and that the new angular biasing scheme is always
advantageous. © 1998 Academic Press

I. INTRODUCTION

For many years, Monte Carlo methods have been used to simulate the interactic
neutral particle radiation with matter [1]. In deep penetration “source-detector” problel
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nonanalog schemes are frequently used to render the Monte Carlo calculation more effi
These schemes often emplggometric splittingthe user assigns geometric surfaces, acro
which particles split if they travel in a favorable direction or are Russian-rouletted if tt
travel in an unfavorable direction) eveight windowgthe user assigns upper and lowe
weight windows in the system, and particle weights are maintained within these wind
via splitting and Russian roulette) [2]. Both of these nonanalog schemes may require
a large number of biasing parameters be specified prior to the nonanalog simulation.
exponential transforns a simpler nonanalog scheme that relies on one biasing parame
For general multidimensional, energy-dependent problems, the exponential transforn
limited effectiveness. However, it has recently been shown that if, like the other bias
schemes, biasing (exponential transform) parameters are defined “locally,” within diffe
subregions of phase space, then the resulting nonanalog scheme can be very efficient
However, it is again the case that many biasing parameters must be specified prior t
simulation. In all these nonanalog schemes, obtaining the optimal biasing parameter
difficult but important practical problem.

In this paper, we propose a new theory for the “classical’ exponential transform v
angular biasing applied to 1-D monoenergetic deep penetration transport problems
anisotropic scattering. This nonanalog scheme depends on a single biasing paramet
discussed later, our theory can be extended to much more general transport prob
However, to introduce our ideas, we consider simpler problems in this paper. Our appr
extends previous work treating transport problems with isotropic scattering [6, 7]. In
earlier and this present work, we develop a rignitzmann Monte CarldBMC) equation
that predicts the statistical behavior of Monte Carlo particles governed by the nonan
Monte Carlo transport process occurring within the computer (but not, of course, in the
world). The new BMC equation yields the first through fourth score-moments of transmit
current estimates, and the mean number of collisions per Monte Carlo particle. Thus
solution of the BMC equation enables one to predict the variance, the variance of the sa
variance, and the Figure of Merit of the nonanalog scheme, for any biasing parametelr

In earlier work, theoretical approaches to predict the second or higher moments o
score for various values of the exponential transform parameter have employed the ap
imation of discretized flight directions [8—10]. This previous work explains some comnmn
features observed in the exponentially transformed simulation, such as the minimizatic
variance and the divergence and unreliability of variance estimates for large values o
transform parameter. The rigorous prediction of variance was first accomplished by An
and Djomehri using transport-like integral equations for a score distribution in analog si
lations [11]. Sarkar and Prasad [12] extended this approach to the exponential trans
and predicted the variance for various values of the transform parameter. More rece
Sarkar and Rief [13] have combined this approach with a technique in sensitivity anal
[14] to predict a value of the transform parameter that minimizes the variance.

This prior work utilizes an adjoint theory, in which one focuses on the calculation of
integral response. The relationship between the adjoint-based work and the present
formulation is discussed in detail in [7] but will not be repeated here. In brief, the connec
is that one can formulate an adjoint BMC equation and derive the previous equations fo
score moment by simply taking weight moments of the adjoint BMC equation. Thus,
BMC equation yields a more basic theory, from which previous approaches can be der
Also, the BMC equation provides additional information, such as the distribution of Mo
Carlo particles and the Figure of Merit.
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Variance reduction methods introduce particle weight, and reducing weight fluctuati
is very important. In this paper, we propose a new angular biasing scheme in which
same weight change occurs in a collision for any flight direction. This “Generalized Dwiv
Transform” (GDT) generalizes earlier methods proposed by Dwivedi [15, 16] for isotro
scattering problems and Depinay [5] for anisotropic scattering. We use the BMC equatic
predict the performance of the GDT scheme. Also, we compare these predictions to d
Monte Carlo simulations and show that the BMC predictions are correct.

In addition, we discuss a connection between the GDT scheme and the “asympt
solution of the Boltzmann equation for source-free media. This enables us to detert
a “safe” upper limit of the transform parameter, above which the variance-of-the-sam
variance of the nonanalog solution will become infinite if the system is sufficiently larg

The remainder of this paper is organized as follows. In Section II, we develop the Bl
equation for monoenergetic 1-D transport problems with anisotropic scattering, sut
to the exponential transform with angular biasing. In Section Il we develop the Gl
scheme, and in Section IV we use the BMC equation to determine the maximum
values of the GDT transform parameter. In Section V we develop an approximate C
scheme, which may be used in problems with a high order of anisotropic scatterinc
Section VI we discuss the optimization of the Figure of Merit. In Section VIl we prese
numerical results, comparing the performance of various exponential transform sche
with theoretical predictions using the BMC equation. We discuss theoretical features o
GDT scheme in Section VIII and conclude with a general discussion in Section IX.

II. EXPONENTIAL TRANSFORM WITH ANGULAR BIASING

Let us consider the following mono-energetic planar-geometry transport problem v
anisotropic scattering,

oy
H 06 1) + ot 0P (X, )

os0(X) [* N
- 52 [1 14> @M+ D) Pra(i) Pm(w) | ¥ (X, i) dt’,

m=1
O<x<X,—-1=<pu=<l (1
pO ) = S ) g < @
Min
X =0, -1<pu<0. 3)

HereP,(w) is thenth Legendre polynomial and, is fixed on (0, 1]. This problem is driven
by a unit monodirectional current on the left boundary. We wish to compute the transmi
current:

1
JF(X) = / pyr (X, ) dp. (4)
0
We apply the following transformation to Egs. (1)—(3),

Wi, 1) = 1 () € o WOy, (5)



A KINETIC THEORY FOR NONANALOG MONTE CARLO 409

wherel is a freely chosen parameter ahgl) satisfies

| (pin) = 1. (6)

(The form ofl is specified later.) Equation (1) becomes

BN 1 )
po )+ ol =AW (X, pn) = / ot(L—ap )W (X, uHg', wydu',
-1
O<x<X,-1<su<l,
where

1 I (1) os0

N
T T 200 | T 20 @M+ DnPn() P |

m=1

g(u', p) =

The variablex may also appear as an argumergin’, «); the omission of this dependence
will cause no ambiguity. We rewritg(u’, 1) as the product

g, w) = f(u', W),

wheref (i, n) andp () are defined as

1 () [14 M1 (2M + 1) Prn(12) Prn(i)]

H ) = o [T S @M+ DnPa PaG) i )
and
1 oo [ N
P = Gy 2 /_ 1) 1 D2@m - D) P | i @

Then, f (u/, u) du is the probability that in the system governed by the transformed eq
tion, a particle scatters inth abouty assuming it scattered &k, i), andp(u') is the
multiplication factor, or the mean number of particles exiting a collision. For simplici
we have omitted the notational dependence of these functiohsl@p), andx. Equations
(2)—(3) now may be written

ow 1
MW(X»,U«) +or(L— AW (X, u) = /10t(1—)\u’)‘IJ(X, ) f(u', w)du',

O<x<X,-1=<u<l (9

WO,y =SB TR g g (10)

Min
W(X,un) =0, —-1<u<0O (12)

and the transmitted current in the original problem, Eq. (4), is expressed as

X , 1
I (X) = e o "‘(X’)dx/ M y(x, ) du (12)
o I(w
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We simulate the system described by Egs. (9)—(11) using survival biasing [2], in which u
collision, the statistical weight of a particle is multiplied by the multiplication fagtor

To analyze the numerical process occurring in this simulation, we define a “Monte Ca
(MC) particle as one with the following properties [6, 7]:

(1) Statistical weightiv” is an independent variable, just likeand ..

(2) All MC particles are born with unit weight.

(3) The total cross section &t, u) is o1 (X)(1 — Au). (To ensure that this quantity is
positive, we requiré.| < 1, and to ensure that particles are biased in the posittlieaction,
we require O< 1 <1.)

(4) At collisions a MC particle always scatters.

(5) Upon collision at(x, u'), the weight ‘w” of a MC particle changes by the multi-
plicative factoro ().

(6) The distribution of flight directions after a collision@t, u') is f (u/, ).

For these MC particles, we define the angular flux:
¢ (X, u, w) dx du dw = angular flux due to MC particles ifdx, du, dw) about(x, u, w).

We require that the angular flux of MC particlggx, ., w), is related to that of the system
of Egs. (9)—(11) by

WX, n) = /00 wo (X, w, w) dw. (13)
0

This makes our definition of MC particles consistent with the convention that the weigh
particle density in simulations is equal to the particle density in the physical problem.
By the above properties (3)—(6), the collision process of MC particles is expressed |

or(1— ) (x, u', w)dw du’ = collision rate due to MC patrticles iy’
aboutu” and indw’ aboutw’,

and

S[w— p(u)Hw']f (1, u) dwdu = the probability that when a MC particle with
directiony’ and weightw’ scatters, its new
direction will lie indu aboutu and its new
weight will lie in dw aboutw.

Therefore, the Monte Carlo Boltzmann (BMC) equation is

9
Ma—ﬁ(X, w, w) +ot(L—A)e (X, u, w)
1 00
= / /0 ot(L— Ao (X, ', w)s[w — w'p(u)] f(u', w) dw'dp'.
-1

The integral on the right side of this equation specifies the weight and direction chang
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Monte Carlo particles when they undergo collisions. Rewriting this integral Ugang =
3(x)/a and including the boundary condition, the BMC problem for Egs. (9)—(11) becon

ad
M%(X’ M, w) + Gt(l - )"M)(p(xv M, w)

1 f ’
=/ at(l—m)¢<x,,/, od > Wl g 0ex<X —l<p<1 (14)

1 e )  p()
60, 11, w) = w(xw—m, O<pu<1, (15)
d(X, u, w) =0, —1<u<0. (16)

(The second-function in Eq. (15) is due to property (2) stated above.)
Now, let us define thath weight moment of the MC particle flux:

qa“”(x,,L)E/ w'o (X, w, w)dw, n=0,1,.... a7
0

Operating on Egs. (14)-(16) by’0°° w"(-) dw, we obtain the following problem for
D™ (x, p):

oM
aX

1
n (X, 1) +or(1 — a) @™ (X, ) = / ot (L—2u )P (X, )" f (1, ) du’,
-1

O<x<X,—-l<pu<1 (18)

™0, n) = M O<u<l, (19)

Min

WX, u) =0, —-1<pu<D0O. (20)

Thus, the problems for the different weight moments are uncoupled.
Forn=1, we obtain Egs. (9)—(11):

Y (X, 1) = W(X, p). (21)

Forn =0, integrating Eq. (18) ovet, and using Eq. (17), we obtain

d 1 [}

Integrating this equation over@ x < X and using the boundary conditions (Egs. (15) an
(16)) to eliminate the incident MC fluxes, we obtain

1 pro0 0 oo
l:/o/o uo (X, u, w)dwdu-i—/l/o |l (0, w, w)dwdpu. (22)

Therefore, if we define the probability density functiBiix, w) as

P(u, w) dw du = the probability that a MC particle introduced at the left boundary
will exit the system, with the direction of flight idx abouty,
and with weight indw aboutw,



412 UEKI AND LARSEN

then

foru=0,0<w, (23)

uod (X, w, w), forO<u<1,0<w,
P(u, w)
g0, u, w), for—-1<u <0,0< w.

Using Egs. (17) and (21), we obtain from Eg. (12)

) =e b "'“)‘“// (X, w) dw du

()
- / | st P w dwds (24)
-1Jo
whereS(u, w), the score for the transmitted current estimate, is
— ) >(a‘(x)dx w
S(p, w) = ey T for0<p=<10<w, (25)
o, for—-1<u<0,0<w.

Thenth moment of the transmitted current estimate is

1 00
E[S' (1, w)] = / 1 /0 (1, w)P (. w) dw da, (26)
and
I*(X) = E[S(, w)].

Using Egs. (23), (25), and (17), we find that Eq. (26) becomes

1
E[S' (1, w)] = /O S, Dud™ (X, 1) dpa. (27)

Thus, using the solution of Egs. (18)—(20), we can computatihenoment of transmitted
current estimates by Eq. (27).
We can simplify Egs. (18)—(20) by defining

o j: or(x') dx’

EM(x, p) = Tob‘”)(x, ). (28)

Then Egs. (18)—(20) become

9 (n)
ne w) + o0& ™ (x, w)

N
14 @M+ DmPa() Pu(w) | p"HHE™ (X, ) dit’,

m=1

O<x<X, —-l<p<1 (29)

gy = 2T (30)

Min

eW(X,u)=0, —-1l<u<DO. (31)
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Also, by Egs. (25), (27), and (28), timth moment of the transmitted current estimate is

1
E[S (1, w)] = /O S, D™ (X, ) . (32)

We use Egs. (29)—(32) to predict the score moments of the transmitted current, particu
the varianceE[S? (., w)] — E?[S(u, w)].

lIl. ISOTROPIC MULTIPLICATIVE FACTOR

For problems with isotropic scattering, Dwivedi’'s importance transform [15], which cc
sists of the exponential transform with angular biasing, is much more efficient than the g
exponential transform with no angular biasing(/) = 1] [7]. (Dwivedi’'s approximation
to the importance function that is determined by the zero variance problem [16] become
exact asymptotic solution of the adjoint transport equation for a special value of the bia
parametei; see Eq. (43).) The angular part of Dwivedi’'s importance transform is

1— Xuin
=750 (33)

When Eq. (33) is applied to a problem with isotropic scatteriNg=0), the multiplicative
factorp () (EqQ. (8)) becomes

p(u)=p=@ "
0 20’t _11—)\,&/.

(34)

Thus, the change of weight at a collision is independent of the direction of flight before
collision. Also, the distribution of flight directions after the collisidriw’, 1) (Eq. (7)) is
biased toward the positive direction:

’ LA dw /@ =)

These two features make the fluctuation of the sc8tg, w) in Eq. (25), very small,
yielding a significant reduction of variance. In this section, we propose a generalizatio
Dwivedi’s transform to problems with anisotropic scattering. We call our proposed sche
the Generalized Dwivedi Transform (GDT).

In the GDT scheme, we requipge) in Eq. (8) to be isotropic:

p (1) = po. (35)

(Here, we omit showing the dependencepgbn A and other parameters Ir(w) for nota-
tional simplicity.) We obtain the following eigenvalue problem fgrand| (u),

N
1+ M+ 1)0nPa()Pa() | du',  (36)

m=1

c 1
po(L—=2aw)l (n) = 5/1 (1)

wherec =og/0t. Wheni =0, | (u) =1 andpp = c, as expected. In the following analysis,
we assume. £ 0 unless specifically mentioned.
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lIl.I. Linearly Anisotropic Scattering

WhenN =1, Eq. (36) becomes

1
polL = 1)l () = 7 / G+ ') A (37)

Operating on Eq. (37) bff1(~) du, we obtain

1 po—cC [t
/u/l(u/)du/= o / I (u)du'. (38)

1 1

Combining Eq. (37) with (38)l (1) is expressed as

1+ 39 - A !
|(M)=i< + 301((po — €)/po )M)/ () dyd, (39)
2po 1-an -1

Operating on Eq. (39) bffl(-) du, we obtain

_c /‘1 1+ (301/pol)(po — Ot
po=7 B 1-u 72

This yields the following quadratic equation fog:

1 2 1
2 (€ 1+ (301/M) c 301/ M) 3
& <2/1 1— d“)p°+<2 Y d“>_°‘ (40)

When#; = 0 (isotropic scattering), Eq. (40) reduces to Eq. (34). When 0, Eq. (40) has
two positive solutions, one of which is larger thamecause the left side of Eq. (40) is
positive atpg = 0 and negative aty = c. We choose theg which is larger tharc because
due to Eq. (38), this choice is consistent with angular biasing toward the positive direct

For each value of, we calculatepg in this manner and obtain the angular part of th
GDT by Egs. (39) and (6),

1—Apin 1+ a1p

I (w) = , 41
(W) AT (41)
where
—c
ar =30, °. (42)
Lo

Wheno, =0, @; =0, and Eq. (41) reduces to Eq. (33). We defirias the value of. that
yields pp = 1:

1 * _
c/ 14 (361/A%) (A -0 du. (43)

1=~
2 1 l—)\.*ﬂ

When6; =0, Eq. (43) reduces to Eq. (34) with() = pp = 1, the corresponding equation
for N =0. Fori = A*, there is no fluctuation in a particle’s weight: this weight is initially
unity and remains unity after arbitrarily many collisions.
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lII.II. Quadratically Anisotropic Scattering
WhenN =2, Eq. (36) becomes

1

poll— A () = / OTL+ B+ P PaO] A (49

Operating on Eq. (44) bﬁfl(-) du, we obtain Eqg. (38). Operatingon Eq. (44)ﬁﬁi w()dpu,
we obtain

1 1
(o — CH1) /lul (wydu = po/\/luzl (w)du. (45)

Using the recursion relation of Legendre polynonRalu) = u? = 4P(u) + 3 Po(n) and
Eq. (38), Eq. (45) becomes

1 3 1 1
/71 Po(u) ! (n) dp = [m(po — Ch1)(po — C) — 5} /1 I (w)dp. (46)

If we define
—-C
Ak, po) = 22 (47)
PoA
and
B(A )—i( — cO1)( —C)—} (48)
, P0) = ng)@ £0 1){00 >

then combining Eq. (44) with Egs. (38) and (46)—(48), we obtain

2p0

1+ 30.A(, 56,B(, po) P 1
|(M)=< c) + 361 A( po)f_-l-kuz( 00) Po(w) 1|(M)dM- (49)

Finally, integrating Eq. (49) over, we obtain
c
po=3 [Lo(A) + 301A(%, po)L1(X) + 562B(%, po)L2(1)]

where

L Py d
La(A) E/ #
-1 1l=Ap

This yields the following cubic equation fag:

py— g(Lo(A) + $1ha@) | 1%La) 592"2()‘)) 2

A 2,2 2 )™
c? 30:L1(}) 159,601 + DLo(1) 15(339192 Lo(n) .
§< r 2.2 >p o ( 4)2 =0 (0

As in the previous subsection, we choose the valya dhat is greater thaa.
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By Egs. (49) and (6), the angular part of the GDT becomes

1— Auin 1+ +axPa(u)

() = ) 51
=1y a1 ftin + o2Pa(iin) 1-p ®D
where
a1 = 301A(A, po), (52)
oz = 562B(4, po), (53)

and pg is calculated by Eq. (50). Whei =0, o, =0, Eq. (50) reduces to Eqg. (40), and
Eq. (51) reduces to Eq. (41). As before, we defihéo be such that wheh=21*, pg=1,

c

1= E[LO(A*) + 301 A, DL1(A") + 56:B(A ", 1) Lo (A™)]. (54)
For6, =0, Eq. (54) reducesto Eq. (43), the corresponding equatidx ferl. Whem. = 1*,
each particle’s weight is always unity, as before.

IV. MAXIMUM “SAFE” VALUES OF THE TRANSFORM PARAMETERS

The parameters introduced in the previous sections should be chosento lie in the ran
whichE[S"(u, w)]is finite forn = 2, 3, and 4, this guarantees that both the variance and t
variance of the variance estimate are finite [7]. By Eq. (32), these conditions are satisfi
and only if¢™ (X, w) is finite forn =2, 3, and 4. Thus, Egs. (29)—(31) must have bounde
solutions forn=2, 3, and 4. When the fourth moment is finite, the first through thir
moments are finite, because fox@ < 8, E[|S|“]§ < E[|S|ﬂ]% (Lyapounov's inequality
[7]). Therefore, it suffices to consider a case such§M&tX, w) is “borderline” finite.

Let us consider Egs. (29)—(31) fot = oo (semi-infinite medium). If these equations
represent “non-multiplying” media, then their solutions will decrease to zed-asoo,
and hence will remain bounded. The borderline finite case is wherat, these equations
have a solution that approaches a nonzero constaKt-asoo. When this happens, this
solution is finite for allx, but if the multiplicative factoro(u’) increases by even the
slightest amount, it may become infinite ¥s— oo.

Thus, we define thenaximum safe valuef A to be one for which Eq. (29) with = 4
has a solution independentxf This implies

1
(o
cow =22 [
Ot J-1

N
14> @M+ HfmPa(i) Pa(w) | p ()% () dpt',

m=1

—1<pu<1 (55)

Becausep () in Eq. (8) is defined by (1") andx as well as cross sections, the existenc
of a solution of Eqg. (55) depends on the value of the transform parametéhenp (')
does not depend o’ (p(n') = po = constw.r.t.u’), we obtain, by integrating Eq. (55)
overu,
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In GDT, | (1) is defined by Egs. (33), (41), or (51) fbf =0, 1, or 2, respectively, and
p(u) does not depend gn'. In this case, we can define the maximum safe valugy, as
the value which gives

O]
Po(Amax) = ¢ (rito (56)
s

Here po(Amax) denotes the root of the linear equation (34), quadratic equation (40), or
cubic equation (50) wheh= Anax.
V. APPROXIMATE METHOD

Aninefficientaspect of the exponential transform for problems with anisotropic scattel
is that sampling flight directions leads to employing the rejection method [1, 2]. To c«
with this, for | (1) defined by Egs. (41) or (51), we sample a new flight directicinom
f(u', ) in the following way:

(1) Sampleu fromh(w) by direct inversion, where

1- Au// 1—ap”

(2) Sampleu uniformly on (0, G(u')), where

h(n) =

Gu) = _Tlfgfl[l + 3010 + 502 P2 (v) Po(u)][1 + a1v 4+ a2 Po(v)].

(3) Accepty if u < [1+301up’ +502Pa(1) P2()][1 + ot + a2 Po()].
Otherwise, go back to step (1) and repeat.

This logic is valid because

P (. accept
Plrlaccept =~ occept
[14 3011 4562 P (1) Po(u)][L + v pt + ctp Po ()]

= 7y [+ 30100 1 + 502 Po () Pa (N[ +aapn” +ap Pa ()] ,
J ) dp”
= (', ),
whereP (i | acceptdu is the conditional probability of the direction cosine taking value

in du abouty assuming that it is accepted, aRdu, acceptdu is the probability of the
direction cosine taking values @u aboutu and its being accepted. Since

[1 4+ 3010 4 502 P2(v) Pa(u)][1 + a1 + a2 Po(v)]
is less steep than

[1+ 301vp” + 502 P2(v) Pa(u)][L + v + a2 P2(v)] /(1 — Av)
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for most ofthe values gf’ on [—1, 1], the above rejection method is more efficient than plai
rejection sampling. Thus, If(i) (Egs. (41) and (51)) has a reasonably good approximatic

lap(ue), for which
1
lapl1) / | tapt

can be sampled by directinversion, then sampling flight directions becomes efficient wit|
sacrificing overall efficiency because

14 3uavp’ + SuaPa(v) Pa()
is less steep than
[1+ 3pavp” + 5u2aPa(v) P2(u)H][L + agv + a2 Pa(v)].

This logic is also valid because in (1)(u) is replaced by

1
|ap(M)//1 lap(i) du,

G = Jirl%li(l[l + 301vp + 502 P2 (v) Po(u)],

in (2),G(u") is replaced by

and in (3),
U < [14 301’ + 50 Po(0) Po(u)][1 + izt + o2 Pa(p)]
is replaced by
U < [1+4 3011’ 4 502 P2(1) Pa(1')].

Therefore,P(u | accepy becomesf (', ) with | (1) = lap(p).
Also, the “maximum entropy” form of the approximation tgu) defined by Eqgs. (41)
and (51) is exponential:

I(u) ~ lap(u) = el l=tin), (57)

This guarantees direct inversion sampling. Becaugg < 1 and|iuin| < 1, Eqg. (51) be-

comes
A
=[5 ¢ (srn- ]/
A
[(1—a—22>+(a1+)»—%>um+"'}

Then, 8 may be approximated by

a1+ A —azr/2

b=—""wp (58)

This approximation is accurate for small values.dfecause thea; anda; are small.
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The exponential approximation 1qu) may be useful in problems for which the exac
algebraic expressions foi(w), as are obtained in Section Ill, are too complex to warral
exacttreatment. This can occur, forexample, if the scattering processin the original tran:
equation has a high-order Legendre polynomial expansion.

VI. OPTIMIZATIONS

Now we show how the BMC equation can be used to optimize the choice of the bia:
parametet. First, the mean number of collisions in the history of one MC partClg)),
is expressed as

X rl o0
CLO) = / / / ot(1— A (X, w, w)dw du dx, (59)
0o J-1Jo

whereg¢ (X, u, w) is the solution of Egs. (14)—(16). (We assume thgt) =1 or | (u)

is defined by either of Egs. (33), (41), (51), or (57).) Equation (59) is valid becal
Eqgs. (14)—(16) imply that the integral in Eq. (59) is the collision rate for Monte Cal
particles [7]. Equation (59) may be rewritten as

X x Tl
CL(A) = /O oy (x) & Jo 009 { / l(l—ku)l(u)é(o)(x,u)du dx,  (60)

using Egs. (17) and (28).
When using variance reduction methods, the ultimate interest is to maximize the fi¢
of merit (FOM) [18]:

1
- (cpu time (variancg’

FOM

If differences in the efficiency of rejection sampling for various values cdn be ignored,
the cpu time is roughly proportional to the mean number of flights per higtdy) + 1.
Therefore, we may define a quality fact@(r), as the FOM normalized to its value at
A=0:

[CLO) + 1][E(SH) — E*(9s=0
[CLV) 4+ 1][E(S?) — EZ(9)],,

QW) = (61)
Here,E[S"] is computed using Egs. (29)—(32); its dependenci ttmoughl (w) is shown
as subscripts. Equation (61) can be used as a guide to optimize the exponential tran:
with angular biasing; one searches to determine the value of the transform paratheter
maximizesQ(1).

VIl. NUMERICAL RESULTS

In this section we present numerical results of the Monte Carlo estimation and thec
ical prediction of variance, the theoretical prediction of the fourth score moment, and
optimization of the transform parameter. In Monte Carlo simulations of the problem
Egs. (1)-(4), we employed four nonanalog schemes:
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(1) The plain exponential transform (exponential transform with no angular biasir
for which I (u) =1in Eq. (5).

(2) Dwivedi's transform, for whicH (u) is defined by Eq. (33).

(3) The Generalized Dwivedi Transform (GDT), for whikctu) is defined by Eq. (41)
for linearly anisotropic scattering and Eq. (51) for quadratically anisotropic scattering.

(4) The approximate method to the GDT, for whikctw) is defined by Egs. (57) and
(58).

For the resulting transformed system, we simulated Egs. (9)—(12) following the proj
ties (1)—(6) stated in Section Il. This is equivalent to simulating Eqgs. (14)—(16) for Mol
Carlo particles. In the theoretical prediction of the score moments and the mean nur
of flights per history by solving Egs. (29)—(31) and computing Egs. (32) and (60),
wrote a special-purpose discrete ordinatg)(&de [19]. We chosé, = 01 /05 = 0.3 for
linearly anisotropic scattering problems, ahd= 0.5 andf, = os;/05 = 0.1 for quadrati-
cally anisotropic scattering problems, for various values6fos/o;. The slab thickness
is always taken to be 15 mean free paths.

Numerical results for linearly anisotropic scattering witk 0.9 are presented in Figs. 1
and 2. In Fig. 1 we observe that the variance is smaller using Dwivedi’s transform than u
the plain exponential transform, and that it is further reduced using the GDT. Figure 2 sh
that the variance estimates become unreliable for large values of the transform paral
because the fourth moment diverges (the variance of the variance becomes infinite
Fig. 1, we also show*, defined by Eq. (43), and,ax, defined by Eq. (56). We observe
that in the GDT, the variance is minimized nea& A*, and that O< A < Anax IS indeed a
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FIG.1. Variance by theoretical (§ predictions and Monte Carlo (MC) simulations fo 0.9, 6; = 0.3, and
0, =0.0.
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FIG. 2. Theoretical (§) predictions of fourth score moment foe= 0.9, 6; = 0.3, and¢, = 0.0.

safe range because for sucthe fourth moment, the dominant term ensuring the finitene
of the variance of variance estimates [7], remains finite. The same numerical result:
shown in Figs. 3 and 4 for quadratically anisotropic scattering @4t0.9, with A* defined
by Eq. (54). We observe a similar performance as in Figs. 1 and 2, and a smaller vari
for the GDT than for Dwivedi’s transform. We also observe in Figs. 1 and 3 thatfox*,
the exponential approximation to GDT is efficient in the linearly anisotropic case and v
efficient in the quadratically anisotropic case.

Results for linearly and quadratically anisotropic scattering with0.7 are shown in
Figs. 5-8. We observe similar performances as with0.9, except for the exponential
approximation to the GDT. This is not an efficient approximation for linearly anisotrog
scattering withh > 0.6, but it is reasonably efficient for quadratically anisotropic scatterir
with A < A*,

We observe that the theoretical prediction of variance using the BMC equation is accl
and that the approximate method is reasonably close in performance to the GDT for ve
of the transform parametex, up to about 0.6. Surprisingly, for “large” valuesxfgreater
thani*, the exponential approximation to the GDT has smaller variances than the C
method itself. We also calculated the variance using thedgle forc =0.98 and 05 with
linearly and quadratically anisotropic scattering. We observed that the merit of the C
over Dwivedi's method is smaller for these scattering ratios compared to the results
c¢=0.9 and 07. Theseresults are not shown here because they are very similar to Figs. 1
and 7. We may conclude that in the GDT, variance is always minimized akreaf, that
this minimal value of the variance is smaller than the minimum value of the variance
other methods, and that for any valuexadn [0, 1*], the variance using the GDT is always
smaller than the variance using Dwivedi's method.
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FIG.9. Mean number of flights per history by theoretical {®redictions and Monte Carlo (MC) simulations
forc=0.9,6,=0.3, andd, =

Finally, we present Figure-of-Merit optimization results. In Fig. 9, the mean numbel
flights, which would be proportional to the cpu time if the difference between the efficier
of rejection sampling for various values of the transform parameter was negligible, is sh
for c= 0.9 with linearly anisotropic scattering. We observe thatfer0.3, the mean number
of flights in Dwivedi's transform is much smaller than thatin the plain exponential transfor
and that in the GDT this number is further reduced by at least 10%. (For small valugs
the mean number of collisions per history is an increasing functiarbetause the biasing
scheme increasingly prevents Monte Carlo particles from leaking out the left side of
system, and hence having very short histories.) These results are expected, because
various effects of angular biasing. We also observe that the approximate method effici
reduces the mean number of flights. The quality factor (Eq. (61)) for this problem is she
in Fig. 10.

In sampling the direction of flights in Monte Carlo simulations, we employed direct i
version for the plain exponential transform and no transfarea 0), and rejection sampling
for the other transforms with non-zeko We observe that the quality factors estimated i
Monte Carlo simulations are slightly lower than those predicted by theo8e except for
the plain exponential transform. This is due to the extra computational cost of rejec
sampling. The maximum quality factors of the GDT and its approximation are almost ec
to each other, and both exceed that of Dwivedi's transform by more than 50%. The qu
factor of the plain exponential transform is much lower than that of the other methods.

The results for quadratically anisotropic scattering are shown in Figs. 11 and 12.
comparing Figs. 9-12, we observe that the merit of the GDT is larger in quadratic
anisotropic scattering than in linearly anisotropic scattering problems. In Monte C:
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simulations for quadratically anisotropic scattering, we used rejection sampling to deterr
the direction of flights for all transform schemes. We could have used direct inversion
the plain exponential transform, but did not because the root selection rule of the ¢
equation arising in the direct inversion of Eq. (7) witkie) =1 depends on the values
of incident anglesy’, as well as9; and6,, and this additional algebra makes its meri
over rejection sampling small. Also, rejection sampling is a natural choice for more hig
anisotropic scattering. The difference between the quality factors estimated by Monte C
and calculated by gis slight. One notable feature is that in Fig. 12, the maximum quali
factor of the approximate method in Monte Carlo simulations is larger than that of the G
This is due to the efficient rejection sampling as stated in Section V. We believe that
general transport problems with higher-order anisotropic scattering, the approximate ¢
method may yield the largest Quality Factors (hence, the largest Figures of Merit).

VIll. DISCUSSION

Wheni =A%, EQ. (9) withX = o0 andl (u) defined by Egs. (41) and (51) becomes

1

a\y / / / /
P )+ (L= AW, ) = / or(L— A )W (x, 1) TG, ) dad,
-1

0<X<oo. (62)

As X — 00, this equation has the non-zero position-independent solution,

Yx, pw) =W =K

I (u

1
z / (")
wJ-1

11—

N
14> M+ 1)0nPa(i”) Pn(w) | dpd’,

m=1
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TABLE |
A* for Various Types of Scattering and Scattering Ratios

Scattering ratiod)

Type of scattering 0.98 0.9 0.7 0.5
Isotropic 0.24 0.53 0.83 0.96
Linearly anisotropicf; = 0.3) 0.20 0.45 0.74 0.90
Quadratically anisotropi®( = 0.5, 6, = 0.1) 0.17 0.39 0.67 0.84

by Eg. (7), whereK is a constant. Using Eq. (36) with=A* andpg = 1, V() becomes
W) = KT w]%,

whereK’ = 2K /c. Therefore, by Eq. (5), wheK = oo, the original equation, Eq. (1), has
the asymptotic solution far away from the boundaey 0,

Y(x, pn) = K'e™™ 7 (), (63)

wherel (u) is defined by Egs. (33), (41), and (51) fdr=0, 1, 2, respectively.
For isotropic scattering, Eq. (43) reduces to

l_c/l dM/
n 2 _1 1—)»*/1/’

and by Eq. (33), Eq. (63) reduces to
e—)ﬁ‘mx

X, = constx ———.
¥(X, ) 1

This is the “asymptotic” solution of the linear Boltzmann equation (62) [20].

Thus, the GDT method with = 1* is equivalent to using the asymptotic solution witf
the exponential spatial factor replaced by its inverse. We considex™* to be an “over-
transformed” region, althoughi < A < Anax iS a statistically “safe” region for the GDT.

In Table I, A* is calculated for various types of scattering and various values of t
scattering ratio. We observe that in generélpbecomes small for highly scattering media
and highly anisotropic scattering media with small angular deflections. In Tablgal.is
shown for the GDT method. The same phenomena are observed. Therefore, the rar
the transform parameter on which the optimization is done becomes restrictive for hig
scattering media, or for media with highly forward-peaked scattering.

TABLE Il
Amax iN the GDT Method for Various Types of Scattering and Scattering Ratios

Scattering ratiod)

Type of scattering 0.98 0.9 0.7 0.5
Isotropic 0.28 0.59 0.89 0.98
Linearly anisotropic; = 0.3) 0.24 0.51 0.82 0.95

Quadratically anisotropi®( = 0.5,6, = 0.1) 0.20 0.45 0.75 0.91
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To prevent overbiasing, we propose thétbe used as an upper limit for any type of
exponential transform. For the GDT method, we also proposeithatbe viewed as a
statistically “safe” upper limit. Thus, the range<Q. < 1* would be considered “very safe,”
whiletherange* < A < AmaxWould be considered only “safe.” Inthe “very safe” region, th
variance will usually decrease asncreases. In the “safe” region, the variance will usuall
increase as increases, but it should remain finite. However, at the right edge of the “sa
region, the variance of the variance is very nearly (or truly) infinite. For this and larger val
of A, the Monte Carlo estimates of the variance can no longer be trustedirkseases
beyond this value, the variance will increase and at some point will itself become infin

In view of this discussion, and of our numerical observations that the valiettodt
maximizes the Figure of Merit is very close 14, one is tempted to ask the following
question: Does it make practical sense to use any valuetfer tharm*? For the idealized
problems considered in this paper, the answer is probably not. For such problems
value A = 1* makes theoretical sense, it is safe, and it comes very close to yielding
maximum Figure of Merit. However, the same question has a more ambiguous answer
considering generalizations of the GDT scheme and the BMC equation to multidimensic
energy-dependenttransport problems. Here, itis extremely unlikely that a nonanalog scl
based on a single biasing parameter will yield adequate computational efficiency.

Extending the GDT method to multidimensional geometries can be done using sin
algorithms proposed by Turner and Larsen [3, 4] and Depinay [5]. In these nonan:
schemes, the physical system is divided into disjoint subregions, and different bia
parameters are determined for each subregion by means of a deterministic adjoint calcu
thatis performed prior to the Monte Carlo simulation. In each subregion, one must deterr
a value of\ and a direction vector in which the nonanalog scheme will bias particle
Depinay chooses = A*, so that particles undergo no weight changes within a subregit
and he defines the the direction vector using the adjoint calculation. In the Local Imports
Function Transform (LIFT) of Turner and Larseh,and the direction vector are both
obtained from the adjoint calculation. In both approaches, particles undergo weight cha
as they flow from one region to another. In Depinay’s method, these weight changes c
only at subregion boundaries; in the LIFT method they can also occur within a subreg
However, the LIFT method is an approximation of a zero-variance method, and it is
known whether the LIFT method or Depinay’s method yields a larger Figure of Merit.

Similar statements apply to extensions of the GDT scheme to energy-dependent prob
this can be done using the LIFT algorithm [3, 4] with energy-dependent biasing parame
Thus, for problems that are more realistic than the ones treated in this paper, it may in
be logical to choosg # A*.

IX. CONCLUSIONS

We have developed a new “Boltzmann Monte Carlo” (BMC) equation, which conta
weight as an extra independent variable, and which describes all of the “physics” in non
log Monte Carlo particle transport simulations employing the exponential transform v
an arbitrary form of angular biasing in anisotropically scattering media. By taking |
weight-moments of the BMC equation, we have formulated reduced problemthforo-
ments of the score in particle transmission problems. The spatial integration of the ze
weight moment of the BMC solution yields the mean number of particle flights per F
tory. Therefore, using the weight moments of the solution of the BMC equation, one
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deterministically predict the variance and Figure of Merit for the original transmissi
problem. The predictions by our deterministig 8ode agree with the results of Monte
Carlo simulations. In principle, one can use the BMC equation to optimize various none
log Monte Carlo schemes using the exponential transform with various forms of ang
biasing.

We have also developed a new variance reduction scheme by requiring that the w
changes of a particle upon collisions be independent of the direction of flight. We call
new scheme the Generalized Dwivedi Transform (GDT), because it is a natural exter
of Dwivedi’s transform, originally developed for isotropic scattering. Numerical resu
obtained from the BMC equation and direct Monte Carlo simulations show that the G
method is advantageous over existing exponential transforms. We have also develop
approximation to the GDT method and have shown that it is efficient for highly scatt
ing media. This approximation may be useful for problems with high-order anisotro
scattering.

Our derivation of the GDT naturally yields the asymptotic solution of the linei
Boltzmann equation for a source-free, semi-infinite, and anisotropically scattering medi
This derivation provides an upper limit for the exponential transform parameter, above w
the variance of the variance is infinite.

In an earlier paper [7] we showed that an adjoint BMC equation can be formulated
that this equation is useful in evaluating responses and variances of estimated respons:
could have used such an adjoint-based theory in this paper to calculate the variance
transmission probability, but we chose not to do this for the sake of simplicity. However,
other types of responses that do not make use of a final event estimator, it may be nece
to employ an adjoint theory in order to calculate the associated variance.

Finally, we note that specific results in this paper have been derived only for monoe
getic planar geometry transport problems with linearly and quadratically anisotropic s
tering. The extension of the GDT and the BMC equation to problems with higher-or
anisotropic scattering is straightforward. Although the extension of the GDT schem
energy-dependent, multidimensional problems is less straightforward, this can be don
fully practical way by using éocal scheme, in which the underlying phase space is divide
into subregions and within each subregion, a biasing scheme like the GDT is emplo
with its own “local” biasing parameters. If there are many subregions, then many b
ing parameters must be pre-determined. However, this can be done automatically, b
computer itself, using a relatively crude deterministic calculation. This is the philosoj
underlying the LIFT [3, 4] biasing scheme and a very similar biasing scheme propose!
Depinay [5].

In this way, the GDT scheme may be extended to fully practical problems. Ther:
little doubt that the corresponding BMC equation can be developed to theoretically ana
this generalized scheme. Thus, the concepts introduced here can be viewed as one
building blocks of this more general and practical theory, which we hope to pursue in fu
work.
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