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We show that Monte Carlo simulations of neutral particle transport in planar-
geometry anisotropically scattering media, using the exponential transform with an-
gular biasing as a variance reduction device, are governed by a new “Boltzmann
Monte Carlo” (BMC) equation, which includes particle weight as an extra indepen-
dent variable. The weight moments of the solution of the BMC equation determine
the moments of the score and the mean number of collisions per history in the nonana-
log Monte Carlo simulations. Therefore, the solution of the BMC equation predicts
the variance of the score and the figure of merit in the simulation. Also, by (i) using
an angular biasing function that is closely related to the “asymptotic” solution of the
linear Boltzmann equation and (ii) requiring isotropic weight changes at collisions,
we derive a new angular biasing scheme. Using the BMC equation, we propose a
universal “safe” upper limit of the transform parameter, valid for any type of expo-
nential transform. In numerical calculations, we demonstrate that the behavior of the
Monte Carlo simulations and the performance predicted by deterministically solving
the BMC equation agree well, and that the new angular biasing scheme is always
advantageous. c© 1998 Academic Press

I. INTRODUCTION

For many years, Monte Carlo methods have been used to simulate the interaction of
neutral particle radiation with matter [1]. In deep penetration “source-detector” problems,
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nonanalog schemes are frequently used to render the Monte Carlo calculation more efficient.
These schemes often employgeometric splitting(the user assigns geometric surfaces, across
which particles split if they travel in a favorable direction or are Russian-rouletted if they
travel in an unfavorable direction) orweight windows(the user assigns upper and lower
weight windows in the system, and particle weights are maintained within these windows
via splitting and Russian roulette) [2]. Both of these nonanalog schemes may require that
a large number of biasing parameters be specified prior to the nonanalog simulation. The
exponential transformis a simpler nonanalog scheme that relies on one biasing parameter.
For general multidimensional, energy-dependent problems, the exponential transform has
limited effectiveness. However, it has recently been shown that if, like the other biasing
schemes, biasing (exponential transform) parameters are defined “locally,” within different
subregions of phase space, then the resulting nonanalog scheme can be very efficient [3–5].
However, it is again the case that many biasing parameters must be specified prior to the
simulation. In all these nonanalog schemes, obtaining the optimal biasing parameters is a
difficult but important practical problem.

In this paper, we propose a new theory for the “classical” exponential transform with
angular biasing applied to 1-D monoenergetic deep penetration transport problems with
anisotropic scattering. This nonanalog scheme depends on a single biasing parameter. As
discussed later, our theory can be extended to much more general transport problems.
However, to introduce our ideas, we consider simpler problems in this paper. Our approach
extends previous work treating transport problems with isotropic scattering [6, 7]. In our
earlier and this present work, we develop a newBoltzmann Monte Carlo(BMC) equation
that predicts the statistical behavior of Monte Carlo particles governed by the nonanalog
Monte Carlo transport process occurring within the computer (but not, of course, in the real
world). The new BMC equation yields the first through fourth score-moments of transmitted
current estimates, and the mean number of collisions per Monte Carlo particle. Thus, the
solution of the BMC equation enables one to predict the variance, the variance of the sample
variance, and the Figure of Merit of the nonanalog scheme, for any biasing parameter.

In earlier work, theoretical approaches to predict the second or higher moments of the
score for various values of the exponential transform parameter have employed the approx-
imation of discretized flight directions [8–10]. This previous work explains some common
features observed in the exponentially transformed simulation, such as the minimization of
variance and the divergence and unreliability of variance estimates for large values of the
transform parameter. The rigorous prediction of variance was first accomplished by Amster
and Djomehri using transport-like integral equations for a score distribution in analog simu-
lations [11]. Sarkar and Prasad [12] extended this approach to the exponential transform
and predicted the variance for various values of the transform parameter. More recently,
Sarkar and Rief [13] have combined this approach with a technique in sensitivity analysis
[14] to predict a value of the transform parameter that minimizes the variance.

This prior work utilizes an adjoint theory, in which one focuses on the calculation of an
integral response. The relationship between the adjoint-based work and the present BMC
formulation is discussed in detail in [7] but will not be repeated here. In brief, the connection
is that one can formulate an adjoint BMC equation and derive the previous equations for the
score moment by simply taking weight moments of the adjoint BMC equation. Thus, the
BMC equation yields a more basic theory, from which previous approaches can be derived.
Also, the BMC equation provides additional information, such as the distribution of Monte
Carlo particles and the Figure of Merit.
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Variance reduction methods introduce particle weight, and reducing weight fluctuations
is very important. In this paper, we propose a new angular biasing scheme in which the
same weight change occurs in a collision for any flight direction. This “Generalized Dwivedi
Transform” (GDT) generalizes earlier methods proposed by Dwivedi [15, 16] for isotropic
scattering problems and Depinay [5] for anisotropic scattering. We use the BMC equation to
predict the performance of the GDT scheme. Also, we compare these predictions to direct
Monte Carlo simulations and show that the BMC predictions are correct.

In addition, we discuss a connection between the GDT scheme and the “asymptotic”
solution of the Boltzmann equation for source-free media. This enables us to determine
a “safe” upper limit of the transform parameter, above which the variance-of-the-sample-
variance of the nonanalog solution will become infinite if the system is sufficiently large.

The remainder of this paper is organized as follows. In Section II, we develop the BMC
equation for monoenergetic 1-D transport problems with anisotropic scattering, subject
to the exponential transform with angular biasing. In Section III we develop the GDT
scheme, and in Section IV we use the BMC equation to determine the maximum safe
values of the GDT transform parameter. In Section V we develop an approximate GDT
scheme, which may be used in problems with a high order of anisotropic scattering. In
Section VI we discuss the optimization of the Figure of Merit. In Section VII we present
numerical results, comparing the performance of various exponential transform schemes
with theoretical predictions using the BMC equation. We discuss theoretical features of the
GDT scheme in Section VIII and conclude with a general discussion in Section IX.

II. EXPONENTIAL TRANSFORM WITH ANGULAR BIASING

Let us consider the following mono-energetic planar-geometry transport problem with
anisotropic scattering,

µ
∂ψ

∂x
(x, µ) + σt (x)ψ(x, µ)

= σs0(x)

2

∫ 1

−1

[
1 +

N∑
m=1

(2m + 1)θm(x)Pm(µ)Pm(µ′)

]
ψ(x, µ′) dµ′,

0 < x < X, −1 ≤ µ ≤ 1, (1)

ψ(0, µ) = δ(µ − µin)

µin
, 0 < µ ≤ 1, (2)

ψ(X, µ) = 0, −1 ≤ µ < 0. (3)

HerePn(µ) is thenth Legendre polynomial andµin is fixed on (0, 1]. This problem is driven
by a unit monodirectional current on the left boundary. We wish to compute the transmitted
current:

J+(X) =
∫ 1

0
µψ(X, µ) dµ. (4)

We apply the following transformation to Eqs. (1)–(3),

9(x, µ) ≡ I (µ) eλ
∫ x

0
σt (x′) dx′

ψ(x, µ), (5)
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whereλ is a freely chosen parameter andI (µ) satisfies

I (µin) = 1. (6)

(The form of I is specified later.) Equation (1) becomes

µ
∂9

∂x
(x, µ) + σt (1 − λµ)9(x, µ) =

∫ 1

−1
σt (1 − λµ′)9(x, µ′)g(µ′, µ) dµ′,

0 < x < X, −1 ≤ µ ≤ 1,

where

g(µ′, µ) ≡ 1

1 − λµ′
I (µ)

I (µ′)
σs0

2σt

[
1 +

N∑
m=1

(2m + 1)θmPm(µ)Pm(µ′)

]
.

The variablex may also appear as an argument ing(µ′, µ); the omission of this dependence
will cause no ambiguity. We rewriteg(µ′, µ) as the product

g(µ′, µ) = f (µ′, µ)ρ(µ′),

where f (µ′, µ) andρ(µ′) are defined as

f (µ′, µ) ≡ I (µ)
[
1 + ∑N

m=1(2m + 1)θmPm(µ)Pm(µ′)
]∫ 1

−1 I (µ′′)
[
1 + ∑N

m=1(2m + 1)θmPm(µ′′)Pm(µ′)
]
dµ′′ , (7)

and

ρ(µ′) ≡ 1

(1 − λµ′)I (µ′)
σs0

2σt

∫ 1

−1
I (µ′′)

[
1 +

N∑
m=1

(2m + 1)θmPm(µ′′)Pm(µ′)

]
dµ′′. (8)

Then, f (µ′, µ) dµ is the probability that in the system governed by the transformed equa-
tion, a particle scatters intodµ aboutµ assuming it scattered at(x, µ′), andρ(µ′) is the
multiplication factor, or the mean number of particles exiting a collision. For simplicity,
we have omitted the notational dependence of these functions onλ, I (µ), andx. Equations
(1)–(3) now may be written

µ
∂9

∂x
(x, µ) + σt (1 − λµ)9(x, µ) =

∫ 1

−1
σt (1 − λµ′)9(x, µ′)ρ(µ′) f (µ′, µ) dµ′,

0 < x < X, −1 ≤ µ ≤ 1, (9)

9(0, µ) = δ(µ − µin)

µin
, 0 < µ ≤ 1, (10)

9(X, µ) = 0, −1 ≤ µ < 0, (11)

and the transmitted current in the original problem, Eq. (4), is expressed as

J+(X) = e−λ
∫ X

0
σt (x′) dx′

∫ 1

0

µ

I (µ)
9(X, µ) dµ. (12)
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We simulate the system described by Eqs. (9)–(11) using survival biasing [2], in which upon
collision, the statistical weight of a particle is multiplied by the multiplication factorρ.

To analyze the numerical process occurring in this simulation, we define a “Monte Carlo”
(MC) particle as one with the following properties [6, 7]:

(1) Statistical weight “w” is an independent variable, just likex andµ.
(2) All MC particles are born with unit weight.
(3) The total cross section at(x, µ) is σt (x)(1 − λµ). (To ensure that this quantity is

positive, we require|λ| < 1, and to ensure that particles are biased in the positivex-direction,
we require 0< λ < 1.)

(4) At collisions a MC particle always scatters.
(5) Upon collision at(x, µ′), the weight “w” of a MC particle changes by the multi-

plicative factorρ(µ′).
(6) The distribution of flight directions after a collision at(x, µ′) is f (µ′, µ).

For these MC particles, we define the angular flux:

φ(x, µ, w) dx dµ dw ≡ angular flux due to MC particles in(dx, dµ, dw) about(x, µ, w).

We require that the angular flux of MC particles,φ(x, µ, w), is related to that of the system
of Eqs. (9)–(11) by

9(x, µ) =
∫ ∞

0
wφ(x, µ, w) dw. (13)

This makes our definition of MC particles consistent with the convention that the weighted
particle density in simulations is equal to the particle density in the physical problem.

By the above properties (3)–(6), the collision process of MC particles is expressed by

σt (1 − λµ′)φ(x, µ′, w′) dw′ dµ′ = collision rate due to MC particles indµ′

aboutµ′ and indw′ aboutw′,

and

δ[w − ρ(µ′)w′] f (µ′, µ) dw dµ = the probability that when a MC particle with
directionµ′ and weightw′ scatters, its new
direction will lie in dµ aboutµ and its new
weight will lie in dw aboutw.

Therefore, the Monte Carlo Boltzmann (BMC) equation is

µ
∂φ

∂x
(x, µ, w) + σt (1 − λµ)φ(x, µ, w)

=
∫ 1

−1

∫ ∞

0
σt (1 − λµ′)φ(x, µ′, w′)δ[w − w′ρ(µ′)] f (µ′, µ) dw′ dµ′.

The integral on the right side of this equation specifies the weight and direction changes of
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Monte Carlo particles when they undergo collisions. Rewriting this integral usingδ(ax) =
δ(x)/a and including the boundary condition, the BMC problem for Eqs. (9)–(11) becomes

µ
∂φ

∂x
(x, µ, w) + σt (1 − λµ)φ(x, µ, w)

=
∫ 1

−1
σt (1 − λµ′)φ

(
x, µ′,

w

ρ(µ′)

)
f (µ′, µ)

ρ(µ′)
dµ′, 0< x < X, −1≤ µ ≤ 1, (14)

φ(0, µ, w) = δ(µ − µin)

µin
δ(w − 1), 0< µ≤ 1, (15)

φ(X, µ, w) = 0, −1≤ µ < 0. (16)

(The secondδ-function in Eq. (15) is due to property (2) stated above.)
Now, let us define thenth weight moment of the MC particle flux:

8(n)(x, µ) ≡
∫ ∞

0
wnφ(x, µ, w) dw, n = 0, 1, . . .. (17)

Operating on Eqs. (14)–(16) by
∫ ∞

0 wn(·) dw, we obtain the following problem for
8(n)(x, µ):

µ
∂8(n)

∂x
(x, µ)+σt (1 − λµ)8(n)(x, µ) =

∫ 1

−1
σt (1−λµ′)8(n)(x, µ′)ρ(µ′)n f (µ′, µ) dµ′,

0 < x < X, −1 ≤ µ ≤ 1, (18)

8(n)(0, µ) = δ(µ − µin)

µin
, 0 < µ ≤ 1, (19)

8(n)(X, µ) = 0, −1 ≤ µ < 0. (20)

Thus, the problems for the different weight moments are uncoupled.
Forn = 1, we obtain Eqs. (9)–(11):

8(1)(x, µ) = 9(x, µ). (21)

Forn = 0, integrating Eq. (18) overµ, and using Eq. (17), we obtain

d

dx

∫ 1

−1

∫ ∞

0
µφ(x, µ, w) dw dµ = 0.

Integrating this equation over 0< x < X and using the boundary conditions (Eqs. (15) and
(16)) to eliminate the incident MC fluxes, we obtain

1 =
∫ 1

0

∫ ∞

0
µφ(X, µ, w) dw dµ +

∫ 0

−1

∫ ∞

0
|µ|φ(0, µ, w) dw dµ. (22)

Therefore, if we define the probability density functionP(µ, w) as

P(µ, w) dw dµ ≡ the probability that a MC particle introduced at the left boundary
will exit the system, with the direction of flight indµ aboutµ,
and with weight indw aboutw,
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then

P(µ, w) =


µφ(X, µ, w), for 0 < µ ≤ 1, 0< w,
0, for µ = 0, 0< w,
|µ|φ(0, µ, w), for −1 ≤ µ < 0, 0< w.

(23)

Using Eqs. (17) and (21), we obtain from Eq. (12)

J+(X) = e−λ
∫ X

0
σt (x) dx

∫ 1

0

∫ ∞

0

µw

I (µ)
φ(X, µ, w) dw dµ

=
∫ 1

−1

∫ ∞

0
S(µ, w)P(µ, w) dw dµ, (24)

whereS(µ, w), the score for the transmitted current estimate, is

S(µ, w) ≡
{

e−λ
∫ X

0
σt (x) dx w

I (µ)
, for 0 < µ ≤ 1, 0< w,

0, for −1 ≤ µ ≤ 0, 0< w.
(25)

Thenth moment of the transmitted current estimate is

E[Sn(µ, w)] ≡
∫ 1

−1

∫ ∞

0
Sn(µ, w)P(µ, w) dw dµ, (26)

and

J+(X) = E[S(µ, w)].

Using Eqs. (23), (25), and (17), we find that Eq. (26) becomes

E[Sn(µ, w)] =
∫ 1

0
Sn(µ, 1)µ8(n)(X, µ) dµ. (27)

Thus, using the solution of Eqs. (18)–(20), we can compute thenth moment of transmitted
current estimates by Eq. (27).

We can simplify Eqs. (18)–(20) by defining

ξ (n)(x, µ) ≡ e−λ
∫ x

0
σt (x′) dx′

I (µ)
8(n)(x, µ). (28)

Then Eqs. (18)–(20) become

µ
∂ξ(n)

∂x
(x, µ) + σtξ

(n)(x, µ)

= σs0

2

∫ 1

−1

[
1 +

N∑
m=1

(2m + 1)θmPm(µ′)Pm(µ)

]
ρn−1(µ′)ξ (n)(x, µ′) dµ′,

0 < x < X, −1 ≤ µ ≤ 1, (29)

ξ (n)(0, µ) = δ(µ − µin)

µin
, 0 < µ ≤ 1, (30)

ξ (n)(X, µ) = 0, −1 ≤ µ < 0. (31)
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Also, by Eqs. (25), (27), and (28), thenth moment of the transmitted current estimate is

E[Sn(µ, w)] =
∫ 1

0
Sn−1(µ, 1)µξ(n)(X, µ) dµ. (32)

We use Eqs. (29)–(32) to predict the score moments of the transmitted current, particularly
the varianceE[S2(µ, w)] − E2[S(µ, w)].

III. ISOTROPIC MULTIPLICATIVE FACTOR

For problems with isotropic scattering, Dwivedi’s importance transform [15], which con-
sists of the exponential transform with angular biasing, is much more efficient than the plain
exponential transform with no angular biasing, [I (µ) = 1] [7]. (Dwivedi’s approximation
to the importance function that is determined by the zero variance problem [16] becomes an
exact asymptotic solution of the adjoint transport equation for a special value of the biasing
parameterλ; see Eq. (43).) The angular part of Dwivedi’s importance transform is

I (µ) = 1 − λµin

1 − λµ
. (33)

When Eq. (33) is applied to a problem with isotropic scattering (N = 0), the multiplicative
factorρ(µ) (Eq. (8)) becomes

ρ(µ) = ρ0 = σs0

2σt

∫ 1

−1

dµ′

1 − λµ′ . (34)

Thus, the change of weight at a collision is independent of the direction of flight before the
collision. Also, the distribution of flight directions after the collisionf (µ′, µ) (Eq. (7)) is
biased toward the positive direction:

f (µ′, µ) = 1/(1 − λµ)∫ 1
−1 (dµ′/(1 − λµ′))

.

These two features make the fluctuation of the score,S(µ, w) in Eq. (25), very small,
yielding a significant reduction of variance. In this section, we propose a generalization of
Dwivedi’s transform to problems with anisotropic scattering. We call our proposed scheme
the Generalized Dwivedi Transform (GDT).

In the GDT scheme, we requireρ(µ) in Eq. (8) to be isotropic:

ρ(µ) = ρ0. (35)

(Here, we omit showing the dependence ofρ0 onλ and other parameters inI (µ) for nota-
tional simplicity.) We obtain the following eigenvalue problem forρ0 and I (µ),

ρ0(1 − λµ)I (µ) = c

2

∫ 1

−1
I (µ′)

[
1 +

N∑
m=1

(2m + 1)θmPm(µ′)Pm(µ)

]
dµ′, (36)

wherec= σs0/σt . Whenλ = 0, I (µ) = 1 andρ0 = c, as expected. In the following analysis,
we assumeλ 6= 0 unless specifically mentioned.
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III.I. Linearly Anisotropic Scattering

WhenN = 1, Eq. (36) becomes

ρ0(1 − λµ)I (µ) = c

2

∫ 1

−1
I (µ′)(1 + 3θ1µ

′µ) dµ′. (37)

Operating on Eq. (37) by
∫ 1

−1(·) dµ, we obtain∫ 1

−1
µ′ I (µ′) dµ′ = ρ0 − c

ρ0λ

∫ 1

−1
I (µ′) dµ′. (38)

Combining Eq. (37) with (38),I (µ) is expressed as

I (µ) = c

2ρ0

(
1 + 3θ1((ρ0 − c)/ρ0λ)µ

1 − λµ

) ∫ 1

−1
I (µ′) dµ′. (39)

Operating on Eq. (39) by
∫ 1

−1(·) dµ, we obtain

ρ0 = c

2

∫ 1

−1

1 + (3θ1/ρ0λ)(ρ0 − c)µ

1 − λµ
dµ.

This yields the following quadratic equation forρ0:

ρ2
0 −

(
c

2

∫ 1

−1

1 + (3θ1/λ)µ

1 − λµ
dµ

)
ρ0 +

(
c2

2

∫ 1

−1

(3θ1/λ)µ

1 − λµ
dµ

)
= 0. (40)

Whenθ1 = 0 (isotropic scattering), Eq. (40) reduces to Eq. (34). Whenθ1 > 0, Eq. (40) has
two positive solutions, one of which is larger thanc because the left side of Eq. (40) is
positive atρ0 = 0 and negative atρ0 = c. We choose theρ0 which is larger thanc because
due to Eq. (38), this choice is consistent with angular biasing toward the positive direction.

For each value ofλ, we calculateρ0 in this manner and obtain the angular part of the
GDT by Eqs. (39) and (6),

I (µ) = 1 − λµin

1 + α1µin

1 + α1µ

1 − λµ
, (41)

where

α1 = 3θ1
ρ0 − c

ρ0λ
. (42)

Whenθ1 = 0, α1 = 0, and Eq. (41) reduces to Eq. (33). We defineλ∗ as the value ofλ that
yieldsρ0 = 1:

1 = c

2

∫ 1

−1

1 + (3θ1/λ
∗)(1 − c)µ

1 − λ∗µ
dµ. (43)

Whenθ1 = 0, Eq. (43) reduces to Eq. (34) withρ(µ) = ρ0 = 1, the corresponding equation
for N = 0. Forλ = λ∗, there is no fluctuation in a particle’s weight: this weight is initially
unity and remains unity after arbitrarily many collisions.
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III.II. Quadratically Anisotropic Scattering

WhenN = 2, Eq. (36) becomes

ρ0(1 − λµ)I (µ) = c

2

∫ 1

−1
I (µ′)[1 + 3θ1µ

′µ + 5θ2P2(µ
′)P2(µ)] dµ′. (44)

Operating on Eq. (44) by
∫ 1

−1(·) dµ, we obtain Eq. (38). Operating on Eq. (44) by
∫ 1

−1 µ(·) dµ,
we obtain

(ρ0 − cθ1)

∫ 1

−1
µI (µ) dµ = ρ0λ

∫ 1

−1
µ2I (µ) dµ. (45)

Using the recursion relation of Legendre polynomialP1(µ) = µ2 = 2
3 P2(µ)+ 1

3 P0(µ) and
Eq. (38), Eq. (45) becomes∫ 1

−1
P2(µ)I (µ) dµ =

[
3

2ρ2
0λ

2
(ρ0 − cθ1)(ρ0 − c) − 1

2

] ∫ 1

−1
I (µ) dµ. (46)

If we define

A(λ, ρ0) ≡ ρ0 − c

ρ0λ
(47)

and

B(λ, ρ0) ≡ 3

2ρ2
0λ

2
(ρ0 − cθ1)(ρ0 − c) − 1

2
, (48)

then combining Eq. (44) with Eqs. (38) and (46)–(48), we obtain

I (µ) =
(

c

2ρ0

)
1 + 3θ1A(λ, ρ0)µ + 5θ2B(λ, ρ0)P2(µ)

1 − λµ

∫ 1

−1
I (µ) dµ. (49)

Finally, integrating Eq. (49) overµ, we obtain

ρ0 = c

2
[L0(λ) + 3θ1A(λ, ρ0)L1(λ) + 5θ2B(λ, ρ0)L2(λ)] ,

where

Ln(λ) ≡
∫ 1

−1

Pn(µ) dµ

1 − λµ
.

This yields the following cubic equation forρ0:

ρ3
0 − c

2

(
L0(λ) + 3θ1L1(λ)

λ
+ 15θ2L2(λ)

2λ2
− 5θ2L2(λ)

2

)
ρ2

0

+ c2

2

(
3θ1L1(λ)

λ
+ 15θ2(θ1 + 1)L2(λ)

2λ2

)
ρ0 −

(
15c3θ1θ2L2(λ)

4λ2

)
= 0. (50)

As in the previous subsection, we choose the value ofρ0 that is greater thanc.
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By Eqs. (49) and (6), the angular part of the GDT becomes

I (µ) = 1 − λµin

1 + α1µin + α2P2(µin)

1 + α1µ + α2P2(µ)

1 − λµ
, (51)

where

α1 ≡ 3θ1A(λ, ρ0), (52)

α2 ≡ 5θ2B(λ, ρ0), (53)

andρ0 is calculated by Eq. (50). Whenθ2 = 0, α2 = 0, Eq. (50) reduces to Eq. (40), and
Eq. (51) reduces to Eq. (41). As before, we defineλ∗ to be such that whenλ = λ∗, ρ0 = 1,

1 = c

2
[L0(λ

∗) + 3θ1A(λ∗, 1)L1(λ
∗) + 5θ2B(λ∗, 1)L2(λ

∗)]. (54)

Forθ2 = 0, Eq. (54) reduces to Eq. (43), the corresponding equation forN = 1. Whenλ = λ∗,
each particle’s weight is always unity, as before.

IV. MAXIMUM “SAFE” VALUES OF THE TRANSFORM PARAMETERS

The parameters introduced in the previous sections should be chosen to lie in the range for
whichE[Sn(µ, w)] is finite forn = 2, 3, and 4; this guarantees that both the variance and the
variance of the variance estimate are finite [7]. By Eq. (32), these conditions are satisfied if
and only ifξ (n)(X, µ) is finite forn = 2, 3, and 4. Thus, Eqs. (29)–(31) must have bounded
solutions forn = 2, 3, and 4. When the fourth moment is finite, the first through third
moments are finite, because for 0< α < β, E[|S|α]

1
α ≤ E[|S|β ]

1
β (Lyapounov’s inequality

[7]). Therefore, it suffices to consider a case such thatξ (4)(X, µ) is “borderline” finite.
Let us consider Eqs. (29)–(31) forX = ∞ (semi-infinite medium). If these equations

represent “non-multiplying” media, then their solutions will decrease to zero asX → ∞,
and hence will remain bounded. The borderline finite case is when forn = 4, these equations
have a solution that approaches a nonzero constant asX → ∞. When this happens, this
solution is finite for allx, but if the multiplicative factorρ(µ′) increases by even the
slightest amount, it may become infinite asX → ∞.

Thus, we define themaximum safe valueof λ to be one for which Eq. (29) withn = 4
has a solution independent ofx. This implies

ξ (4)(µ) = σs0

2σt

∫ 1

−1

[
1 +

N∑
m=1

(2m + 1)θmPm(µ′)Pm(µ)

]
ρ(µ′)3ξ (4)(µ′) dµ′,

−1 ≤ µ ≤ 1. (55)

Becauseρ(µ′) in Eq. (8) is defined byI (µ′) andλ as well as cross sections, the existence
of a solution of Eq. (55) depends on the value of the transform parameterλ. Whenρ(µ′)
does not depend onµ′ (ρ(µ′) = ρ0 = const w.r.t.µ′), we obtain, by integrating Eq. (55)
overµ,

1 = σs0

σt
ρ3

0.
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In GDT, I (µ) is defined by Eqs. (33), (41), or (51) forN = 0, 1, or 2, respectively, and
ρ(µ′) does not depend onµ′. In this case, we can define the maximum safe value,λmax, as
the value which gives

ρ0(λmax) = 3

√
σt

σs0
. (56)

Hereρ0(λmax) denotes the root of the linear equation (34), quadratic equation (40), or the
cubic equation (50) whenλ = λmax.

V. APPROXIMATE METHOD

An inefficient aspect of the exponential transform for problems with anisotropic scattering
is that sampling flight directions leads to employing the rejection method [1, 2]. To cope
with this, for I (µ) defined by Eqs. (41) or (51), we sample a new flight directionµ from
f (µ′, µ) in the following way:

(1) Sampleµ from h(µ) by direct inversion, where

h(µ) = 1

1 − λµ

/∫ 1

−1

dµ′

1 − λµ′ .

(2) Sampleu uniformly on(0, G(µ′)), where

G(µ′) = max
−1≤v≤1

[1 + 3θ1vµ′ + 5θ2P2(v)P2(µ
′)][1 + α1v + α2P2(v)].

(3) Acceptµ if u < [1 + 3θ1µµ′ + 5θ2P2(µ)P2(µ
′)][1 + α1µ + α2P2(µ)].

Otherwise, go back to step (1) and repeat.

This logic is valid because

P(µ | accept) = P(µ, accept)

P(accept)

=
h(µ) [1 + 3θ1µµ′ + 5θ2 P2(µ)P2(µ

′)][1 + α1µ + α2 P2(µ)]
G(µ′)∫

h(µ′′) [1 + 3θ1µ′′µ′ + 5θ2 P2(µ′′)P2(µ′)][1 + α1µ′′ + α2 P2(µ′′)]
G(µ′) dµ′′

= f (µ′, µ),

whereP(µ | accept) dµ is the conditional probability of the direction cosine taking values
in dµ aboutµ assuming that it is accepted, andP(µ, accept) dµ is the probability of the
direction cosine taking values indµ aboutµ and its being accepted. Since

[1 + 3θ1vµ′ + 5θ2P2(v)P2(µ
′)][1 + α1v + α2P2(v)]

is less steep than

[1 + 3θ1vµ′ + 5θ2P2(v)P2(µ
′)][1 + α1v + α2P2(v)]/(1 − λv)
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for most of the values ofµ′ on [−1, 1], the above rejection method is more efficient than plain
rejection sampling. Thus, ifI (µ) (Eqs. (41) and (51)) has a reasonably good approximation,
Iap(µ), for which

Iap(µ)

/∫ 1

−1
Iap(µ) dµ

can be sampled by direct inversion, then sampling flight directions becomes efficient without
sacrificing overall efficiency because

1 + 3µ1vµ′ + 5µ2P2(v)P2(µ
′)

is less steep than

[1 + 3µ1vµ′ + 5µ2P2(v)P2(µ
′)][1 + α1v + α2P2(v)].

This logic is also valid because in (1),h(µ) is replaced by

Iap(µ)

/∫ 1

−1
Iap(µ) dµ,

in (2), G(µ′) is replaced by

G(µ′) = max
−1≤v≤1

[1 + 3θ1vµ′ + 5θ2P2(v)P2(µ
′)],

and in (3),

u < [1 + 3θ1µµ′ + 5θ2P2(µ)P2(µ
′)][1 + α1µ + α2P2(µ)]

is replaced by

u < [1 + 3θ1µµ′ + 5θ2P2(µ)P2(µ
′)].

Therefore,P(µ | accept) becomesf (µ′, µ) with I (µ) = Iap(µ).
Also, the “maximum entropy” form of the approximation toI (µ) defined by Eqs. (41)

and (51) is exponential:

I (µ) ≈ Iap(µ) = eβ(µ−µin). (57)

This guarantees direct inversion sampling. Because|λµ| < 1 and|λµin| < 1, Eq. (51) be-
comes

I (µ) =
[(

1 − α2

2

)
+

(
α1 + λ − α2λ

2

)
µ + · · ·

]/
[(

1 − α2

2

)
+

(
α1 + λ − α2λ

2

)
µin + · · ·

]
.

Then,β may be approximated by

β = α1 + λ − α2λ/2

1 − α2/2
. (58)

This approximation is accurate for small values ofλ because thenα1 andα2 are small.
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The exponential approximation toI (µ) may be useful in problems for which the exact
algebraic expressions forI (µ), as are obtained in Section III, are too complex to warrant
exact treatment. This can occur, for example, if the scattering process in the original transport
equation has a high-order Legendre polynomial expansion.

VI. OPTIMIZATIONS

Now we show how the BMC equation can be used to optimize the choice of the biasing
parameterλ. First, the mean number of collisions in the history of one MC particle,CL(λ),
is expressed as

CL(λ) =
∫ X

0

∫ 1

−1

∫ ∞

0
σt (1 − λµ)φ(x, µ, w) dw dµ dx, (59)

whereφ(x, µ, w) is the solution of Eqs. (14)–(16). (We assume thatI (µ) = 1 or I (µ)

is defined by either of Eqs. (33), (41), (51), or (57).) Equation (59) is valid because
Eqs. (14)–(16) imply that the integral in Eq. (59) is the collision rate for Monte Carlo
particles [7]. Equation (59) may be rewritten as

CL(λ) =
∫ X

0
σt (x) eλ

∫ x

0
σt (x′) dx′

[∫ 1

−1
(1 − λµ)I (µ)ξ (0)(x, µ) dµ

]
dx, (60)

using Eqs. (17) and (28).
When using variance reduction methods, the ultimate interest is to maximize the figure

of merit (FOM) [18]:

FOM = 1

(cpu time)(variance)
.

If differences in the efficiency of rejection sampling for various values ofλ can be ignored,
the cpu time is roughly proportional to the mean number of flights per history,CL(λ) + 1.
Therefore, we may define a quality factor,Q(λ), as the FOM normalized to its value at
λ = 0:

Q(λ) ≡ [CL(0) + 1][E(S2) − E2(S)]λ=0

[CL(λ) + 1][E(S2) − E2(S)]λ
. (61)

Here,E[Sn] is computed using Eqs. (29)–(32); its dependence onλ throughI (µ) is shown
as subscripts. Equation (61) can be used as a guide to optimize the exponential transform
with angular biasing; one searches to determine the value of the transform parameterλ that
maximizesQ(λ).

VII. NUMERICAL RESULTS

In this section we present numerical results of the Monte Carlo estimation and theoret-
ical prediction of variance, the theoretical prediction of the fourth score moment, and the
optimization of the transform parameter. In Monte Carlo simulations of the problem of
Eqs. (1)–(4), we employed four nonanalog schemes:
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(1) The plain exponential transform (exponential transform with no angular biasing),
for which I (µ) = 1 in Eq. (5).

(2) Dwivedi’s transform, for whichI (µ) is defined by Eq. (33).
(3) The Generalized Dwivedi Transform (GDT), for whichI (µ) is defined by Eq. (41)

for linearly anisotropic scattering and Eq. (51) for quadratically anisotropic scattering.
(4) The approximate method to the GDT, for whichI (µ) is defined by Eqs. (57) and

(58).

For the resulting transformed system, we simulated Eqs. (9)–(12) following the proper-
ties (1)–(6) stated in Section II. This is equivalent to simulating Eqs. (14)–(16) for Monte
Carlo particles. In the theoretical prediction of the score moments and the mean number
of flights per history by solving Eqs. (29)–(31) and computing Eqs. (32) and (60), we
wrote a special-purpose discrete ordinate (SN) code [19]. We choseθ1 = σs1/σs0 = 0.3 for
linearly anisotropic scattering problems, andθ1 = 0.5 andθ2 = σs2/σs0 = 0.1 for quadrati-
cally anisotropic scattering problems, for various values ofc= σs0/σt . The slab thickness
is always taken to be 15 mean free paths.

Numerical results for linearly anisotropic scattering withc= 0.9 are presented in Figs. 1
and 2. In Fig. 1 we observe that the variance is smaller using Dwivedi’s transform than using
the plain exponential transform, and that it is further reduced using the GDT. Figure 2 shows
that the variance estimates become unreliable for large values of the transform parameter
because the fourth moment diverges (the variance of the variance becomes infinite). In
Fig. 1, we also showλ∗, defined by Eq. (43), andλmax, defined by Eq. (56). We observe
that in the GDT, the variance is minimized nearλ = λ∗, and that 0< λ < λmax is indeed a

FIG. 1. Variance by theoretical (SN ) predictions and Monte Carlo (MC) simulations forc= 0.9, θ1 = 0.3, and
θ2 = 0.0.
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FIG. 2. Theoretical (SN ) predictions of fourth score moment forc= 0.9, θ1 = 0.3, andθ2 = 0.0.

safe range because for suchλ the fourth moment, the dominant term ensuring the finiteness
of the variance of variance estimates [7], remains finite. The same numerical results are
shown in Figs. 3 and 4 for quadratically anisotropic scattering withc= 0.9, withλ∗ defined
by Eq. (54). We observe a similar performance as in Figs. 1 and 2, and a smaller variance
for the GDT than for Dwivedi’s transform. We also observe in Figs. 1 and 3 that forλ ≤ λ∗,
the exponential approximation to GDT is efficient in the linearly anisotropic case and very
efficient in the quadratically anisotropic case.

Results for linearly and quadratically anisotropic scattering withc= 0.7 are shown in
Figs. 5–8. We observe similar performances as withc= 0.9, except for the exponential
approximation to the GDT. This is not an efficient approximation for linearly anisotropic
scattering withλ ≥ 0.6, but it is reasonably efficient for quadratically anisotropic scattering
with λ ≤ λ∗.

We observe that the theoretical prediction of variance using the BMC equation is accurate
and that the approximate method is reasonably close in performance to the GDT for values
of the transform parameter,λ, up to about 0.6. Surprisingly, for “large” values ofλ, greater
thanλ∗, the exponential approximation to the GDT has smaller variances than the GDT
method itself. We also calculated the variance using the SN code forc= 0.98 and 0.5 with
linearly and quadratically anisotropic scattering. We observed that the merit of the GDT
over Dwivedi’s method is smaller for these scattering ratios compared to the results for
c= 0.9 and 0.7. These results are not shown here because they are very similar to Figs. 1, 3, 5,
and 7. We may conclude that in the GDT, variance is always minimized at nearλ = λ∗, that
this minimal value of the variance is smaller than the minimum value of the variance in
other methods, and that for any value ofλ on [0, λ∗], the variance using the GDT is always
smaller than the variance using Dwivedi’s method.
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FIG. 3. Variance by theoretical (SN ) predictions and Monte Carlo (MC) simulations forc= 0.9, θ1 = 0.5, and
θ2 = 0.1.

FIG. 4. Theoretical (SN ) predictions of fourth score moment forc= 0.9, θ1 = 0.5, andθ2 = 0.1.
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FIG. 5. Variance by theoretical (SN ) predictions and Monte Carlo (MC) simulations forc= 0.7, θ1 = 0.3, and
θ2 = 0.0.

FIG. 6. Theoretical (SN ) predictions of fourth score moment forc= 0.7, θ1 = 0.3, andθ2 = 0.0.
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FIG. 7. Variance by theoretical (SN ) predictions and Monte Carlo (MC) simulations forc= 0.7, θ1 = 0.5, and
θ2 = 0.1.

FIG. 8. Theoretical (SN ) predictions of fourth score moment forc= 0.7, θ1 = 0.5, andθ2 = 0.1.
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FIG. 9. Mean number of flights per history by theoretical (SN ) predictions and Monte Carlo (MC) simulations
for c= 0.9, θ1 = 0.3, andθ2 = 0.0.

Finally, we present Figure-of-Merit optimization results. In Fig. 9, the mean number of
flights, which would be proportional to the cpu time if the difference between the efficiency
of rejection sampling for various values of the transform parameter was negligible, is shown
for c= 0.9 with linearly anisotropic scattering. We observe that forλ ≥ 0.3, the mean number
of flights in Dwivedi’s transform is much smaller than that in the plain exponential transform,
and that in the GDT this number is further reduced by at least 10%. (For small values ofλ,
the mean number of collisions per history is an increasing function ofλ because the biasing
scheme increasingly prevents Monte Carlo particles from leaking out the left side of the
system, and hence having very short histories.) These results are expected, because of the
various effects of angular biasing. We also observe that the approximate method efficiently
reduces the mean number of flights. The quality factor (Eq. (61)) for this problem is shown
in Fig. 10.

In sampling the direction of flights in Monte Carlo simulations, we employed direct in-
version for the plain exponential transform and no transform (λ = 0), and rejection sampling
for the other transforms with non-zeroλ. We observe that the quality factors estimated in
Monte Carlo simulations are slightly lower than those predicted by the SN code except for
the plain exponential transform. This is due to the extra computational cost of rejection
sampling. The maximum quality factors of the GDT and its approximation are almost equal
to each other, and both exceed that of Dwivedi’s transform by more than 50%. The quality
factor of the plain exponential transform is much lower than that of the other methods.

The results for quadratically anisotropic scattering are shown in Figs. 11 and 12. By
comparing Figs. 9–12, we observe that the merit of the GDT is larger in quadratically
anisotropic scattering than in linearly anisotropic scattering problems. In Monte Carlo
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FIG. 10. Quality factor by theoretical (SN ) predictions and Monte Carlo (MC) simulations forc= 0.9, θ1 = 0.3,
andθ2 = 0.0.

FIG. 11. Mean number of flights per history by theoretical (SN ) predictions and Monte Carlo (MC) simulations
for c= 0.9, θ1 = 0.5, andθ2 = 0.1.
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FIG. 12. Quality factor by theoretical (SN ) predictions and Monte Carlo (MC) simulations forc= 0.9, θ1 = 0.5,
andθ2 = 0.1.

simulations for quadratically anisotropic scattering, we used rejection sampling to determine
the direction of flights for all transform schemes. We could have used direct inversion for
the plain exponential transform, but did not because the root selection rule of the cubic
equation arising in the direct inversion of Eq. (7) withI (µ) = 1 depends on the values
of incident angles,µ′, as well asθ1 and θ2, and this additional algebra makes its merit
over rejection sampling small. Also, rejection sampling is a natural choice for more highly
anisotropic scattering. The difference between the quality factors estimated by Monte Carlo
and calculated by SN is slight. One notable feature is that in Fig. 12, the maximum quality
factor of the approximate method in Monte Carlo simulations is larger than that of the GDT.
This is due to the efficient rejection sampling as stated in Section V. We believe that for
general transport problems with higher-order anisotropic scattering, the approximate GDT
method may yield the largest Quality Factors (hence, the largest Figures of Merit).

VIII. DISCUSSION

Whenλ = λ∗, Eq. (9) withX = ∞ and I (µ) defined by Eqs. (41) and (51) becomes

µ
∂9

∂x
(x, µ) + σt (1 − λ∗µ)9(x, µ) =

∫ 1

−1
σt (1 − λ∗µ′)9(x, µ′) f (µ′, µ) dµ′,

0 < x < ∞. (62)

As x → ∞, this equation has the non-zero position-independent solution,

9(x, µ) = 9(µ) ≡ K
I (µ)

1 − λ∗µ

∫ 1

−1
I (µ′′)

[
1 +

N∑
m=1

(2m + 1)θmPm(µ′′)Pm(µ)

]
dµ′′,
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TABLE I

λ∗ for Various Types of Scattering and Scattering Ratios

Scattering ratio (c)

Type of scattering 0.98 0.9 0.7 0.5

Isotropic 0.24 0.53 0.83 0.96
Linearly anisotropic (θ1 = 0.3) 0.20 0.45 0.74 0.90
Quadratically anisotropic (θ1 = 0.5, θ2 = 0.1) 0.17 0.39 0.67 0.84

by Eq. (7), whereK is a constant. Using Eq. (36) withλ = λ∗ andρ0 = 1, 9(µ) becomes

9(µ) = K ′[ I (µ)]2,

whereK ′ = 2K/c. Therefore, by Eq. (5), whenX = ∞, the original equation, Eq. (1), has
the asymptotic solution far away from the boundaryx = 0,

ψ(x, µ) = K ′e−λ∗σt x I (µ), (63)

whereI (µ) is defined by Eqs. (33), (41), and (51) forN = 0, 1, 2, respectively.
For isotropic scattering, Eq. (43) reduces to

1 = c

2

∫ 1

−1

dµ′

1 − λ∗µ′ ,

and by Eq. (33), Eq. (63) reduces to

ψ(x, µ) = const× e−λ∗σt x

1 − λ∗µ
.

This is the “asymptotic” solution of the linear Boltzmann equation (62) [20].
Thus, the GDT method withλ = λ∗ is equivalent to using the asymptotic solution with

the exponential spatial factor replaced by its inverse. We considerλ > λ∗ to be an “over-
transformed” region, althoughλ∗ < λ < λmax is a statistically “safe” region for the GDT.

In Table I, λ∗ is calculated for various types of scattering and various values of the
scattering ratio. We observe that in general,λ∗ becomes small for highly scattering media,
and highly anisotropic scattering media with small angular deflections. In Table II,λmax is
shown for the GDT method. The same phenomena are observed. Therefore, the range of
the transform parameter on which the optimization is done becomes restrictive for highly
scattering media, or for media with highly forward-peaked scattering.

TABLE II

λmax in the GDT Method for Various Types of Scattering and Scattering Ratios

Scattering ratio (c)

Type of scattering 0.98 0.9 0.7 0.5

Isotropic 0.28 0.59 0.89 0.98
Linearly anisotropic (θ1 = 0.3) 0.24 0.51 0.82 0.95
Quadratically anisotropic (θ1 = 0.5, θ2 = 0.1) 0.20 0.45 0.75 0.91
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To prevent overbiasing, we propose thatλ∗ be used as an upper limit for any type of
exponential transform. For the GDT method, we also propose thatλmax be viewed as a
statistically “safe” upper limit. Thus, the range 0< λ < λ∗ would be considered “very safe,”
while the rangeλ∗ < λ < λmaxwould be considered only “safe.” In the “very safe” region, the
variance will usually decrease asλ increases. In the “safe” region, the variance will usually
increase asλ increases, but it should remain finite. However, at the right edge of the “safe”
region, the variance of the variance is very nearly (or truly) infinite. For this and larger values
of λ, the Monte Carlo estimates of the variance can no longer be trusted. Asλ increases
beyond this value, the variance will increase and at some point will itself become infinite.

In view of this discussion, and of our numerical observations that the value ofλ that
maximizes the Figure of Merit is very close toλ∗, one is tempted to ask the following
question: Does it make practical sense to use any value ofλ other thanλ∗? For the idealized
problems considered in this paper, the answer is probably not. For such problems, the
valueλ = λ∗ makes theoretical sense, it is safe, and it comes very close to yielding the
maximum Figure of Merit. However, the same question has a more ambiguous answer when
considering generalizations of the GDT scheme and the BMC equation to multidimensional,
energy-dependent transport problems. Here, it is extremely unlikely that a nonanalog scheme
based on a single biasing parameter will yield adequate computational efficiency.

Extending the GDT method to multidimensional geometries can be done using similar
algorithms proposed by Turner and Larsen [3, 4] and Depinay [5]. In these nonanalog
schemes, the physical system is divided into disjoint subregions, and different biasing
parameters are determined for each subregion by means of a deterministic adjoint calculation
that is performed prior to the Monte Carlo simulation. In each subregion, one must determine
a value ofλ and a direction vector in which the nonanalog scheme will bias particles.
Depinay choosesλ = λ∗, so that particles undergo no weight changes within a subregion,
and he defines the the direction vector using the adjoint calculation. In the Local Importance
Function Transform (LIFT) of Turner and Larsen,λ and the direction vector are both
obtained from the adjoint calculation. In both approaches, particles undergo weight changes
as they flow from one region to another. In Depinay’s method, these weight changes occur
only at subregion boundaries; in the LIFT method they can also occur within a subregion.
However, the LIFT method is an approximation of a zero-variance method, and it is not
known whether the LIFT method or Depinay’s method yields a larger Figure of Merit.

Similar statements apply to extensions of the GDT scheme to energy-dependent problems;
this can be done using the LIFT algorithm [3, 4] with energy-dependent biasing parameters.
Thus, for problems that are more realistic than the ones treated in this paper, it may indeed
be logical to chooseλ 6= λ∗.

IX. CONCLUSIONS

We have developed a new “Boltzmann Monte Carlo” (BMC) equation, which contains
weight as an extra independent variable, and which describes all of the “physics” in nonana-
log Monte Carlo particle transport simulations employing the exponential transform with
an arbitrary form of angular biasing in anisotropically scattering media. By taking the
weight-moments of the BMC equation, we have formulated reduced problems fornth mo-
ments of the score in particle transmission problems. The spatial integration of the zeroth
weight moment of the BMC solution yields the mean number of particle flights per his-
tory. Therefore, using the weight moments of the solution of the BMC equation, one can
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deterministically predict the variance and Figure of Merit for the original transmission
problem. The predictions by our deterministic SN code agree with the results of Monte
Carlo simulations. In principle, one can use the BMC equation to optimize various nonana-
log Monte Carlo schemes using the exponential transform with various forms of angular
biasing.

We have also developed a new variance reduction scheme by requiring that the weight
changes of a particle upon collisions be independent of the direction of flight. We call this
new scheme the Generalized Dwivedi Transform (GDT), because it is a natural extension
of Dwivedi’s transform, originally developed for isotropic scattering. Numerical results
obtained from the BMC equation and direct Monte Carlo simulations show that the GDT
method is advantageous over existing exponential transforms. We have also developed an
approximation to the GDT method and have shown that it is efficient for highly scatter-
ing media. This approximation may be useful for problems with high-order anisotropic
scattering.

Our derivation of the GDT naturally yields the asymptotic solution of the linear
Boltzmann equation for a source-free, semi-infinite, and anisotropically scattering medium.
This derivation provides an upper limit for the exponential transform parameter, above which
the variance of the variance is infinite.

In an earlier paper [7] we showed that an adjoint BMC equation can be formulated and
that this equation is useful in evaluating responses and variances of estimated responses. We
could have used such an adjoint-based theory in this paper to calculate the variance in the
transmission probability, but we chose not to do this for the sake of simplicity. However, for
other types of responses that do not make use of a final event estimator, it may be necessary
to employ an adjoint theory in order to calculate the associated variance.

Finally, we note that specific results in this paper have been derived only for monoener-
getic planar geometry transport problems with linearly and quadratically anisotropic scat-
tering. The extension of the GDT and the BMC equation to problems with higher-order
anisotropic scattering is straightforward. Although the extension of the GDT scheme to
energy-dependent, multidimensional problems is less straightforward, this can be done in a
fully practical way by using alocal scheme, in which the underlying phase space is divided
into subregions and within each subregion, a biasing scheme like the GDT is employed,
with its own “local” biasing parameters. If there are many subregions, then many bias-
ing parameters must be pre-determined. However, this can be done automatically, by the
computer itself, using a relatively crude deterministic calculation. This is the philosophy
underlying the LIFT [3, 4] biasing scheme and a very similar biasing scheme proposed by
Depinay [5].

In this way, the GDT scheme may be extended to fully practical problems. There is
little doubt that the corresponding BMC equation can be developed to theoretically analyze
this generalized scheme. Thus, the concepts introduced here can be viewed as one of the
building blocks of this more general and practical theory, which we hope to pursue in future
work.
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